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Abstract
Background—Residual confounding is challenging to detect. We recently described a method
for detecting confounding and justified it primarily for time-series studies. The method depends on
an indicator with two key characteristics: (1) it is conditionally independent (given measured
exposures and covariates) of the outcome, in the absence of confounding, misspecification and
measurement errors; and (2) like the exposure, it is associated with confounders, possibly
unmeasured. We proposed using future exposure levels as the indicator to detect residual
confounding. This choice seems natural for time-series studies because future exposure cannot
have caused the event, yet they could be spuriously related to it. A related question – addressed
here – is whether an analogous indicator can be used to identify residual confounding in a study
based on spatial, rather than temporal, contrasts.

Methods—Using directed acyclic graphs, we show that future air pollution levels may have the
characteristics appropriate for an indicator of residual confounding in spatial studies of
environmental exposures. We empirically evaluate performance for spatial studies using
simulations.

Results—In simulations based on a spatial study of ambient air pollution levels and birth weight
in Atlanta, and using ambient air pollution one year after conception as the indicator, we were able
to detect residual confounding. The discriminatory ability approached 100% for some factors
intentionally omitted from the model, but was very weak for others.

Conclusion—The simulations illustrate that an indicator based on future exposures can have
excellent ability to detect residual confounding in spatial studies, although performance varied by
situation.
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Residual confounding is difficult to detect, in part because assessment must be based on
causal considerations. It is not enough to model statistical associations accurately, as
associations may not mirror causal patterns.1

We have previously proposed a method for detecting residual confounding or other forms of
model misspecification on the tenet that a cause must precede its effect.2,3 The method
utilizes a variable with two key characteristics. The variable should be independent of
disease, absent confounding or other misspecification, and it should be associated with the
exposure and confounding covariates. Emphasizing time-series studies, we previously
argued that future levels of many environmental exposures can often have the needed
characteristics: future exposures cannot have caused past disease, and so an association with
prior disease can be spurious.

Using future exposure variables in time-series studies to detect temporal confounding is
intuitively attractive – future exposures cannot have caused prior health events and yet could
be spuriously related to the event. A related question is whether an analogous variable can
be used in spatial studies to identify residual confounding, such as in studies where region-
specific pollutant concentrations are correlated with region-specific disease rates. Risk
factors such as smoking could co-vary with pollutant concentrations across regions and thus
lead to spatial confounding. Although the nature of confounding differs between spatial and
time-series studies,4 the previously proposed method for detecting residual confounding can
be similarly applied in spatial studies. We present simulation results that evaluate the
method’s performance and discuss its strengths and weaknesses.

Methods
To illustrate the approach for spatial studies, we consider a study whose objective is to
assess the association of area-specific air pollution levels (e.g., ambient ozone, AP0 in the
directed acyclic graph5,6 in Figure 1) with the birth weight of newborn infants in the same
area (D1 in Figure 1). An important presumption is that birth weight (D1) does not affect
future pollution levels (AP2), reflected by the absence of an arrow from D1 to AP2.
Furthermore, spatial factors that affect health and are associated with future pollution levels
(e.g., poverty) should often also be associated with earlier pollutant levels, illustrated by U0
(Figure 1). If these relationships hold, we argue in the eAppendix 1 (http://links.lww.com) –
and previously for time-series studies3 – that, conditional on AP0, future air pollutant levels
should not be associated with disease in the absence of confounding (Figure 2), but
associated in its presence (Figure 1). In this case, future pollutant levels have key
characteristics needed for an indicator of unmeasured confounding2,3 and can be used to
detect it or other model mis-specification.

The model used to analyze the study should include the exposure of interest (air pollutant
level prior to outcome occurrence, APa,i) and relevant covariates. Equation (1) illustrates a
linear form:

(1)
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For infant i in area a, E(Ya,i) is the expected birth weight and APa,i is a relevant, prenatal air
pollutant level.

To use future area-specific air pollutant levels as an indicator, we also fit the same model
that now also includes the indicator variable (area-specific, pollutant level measured after
infant i's birth, say APa,i

f):

(2)

If residual confounding and model mis-specification are absent and the assumed causal
relationships are adequate approximations, APa,i

f should be unassociated with Ya,i after
adjustment for covariates. An association between APa

f and the outcome (δ ≠ 0) suggests
residual confounding or other model misspecification. Thus, we use the statistic I to test for
residual confounding:

(3)

where δ ̂ is the estimated slope and σ̂f its standard error. Under the null hypothesis of no
model misspecification, I is approximately normally distributed.

Simulations
We assess the indicator’s ability to detect residual confounding using data from a spatial
study of ambient air pollution and birth weight in Atlanta. Use of simulations allows us to
specify the “true” causal relationships; using estimated parameters to calculate the “true,”
expected birth weights makes the simulations realistic. We consider two ambient pollutants
commonly assessed in the birth outcomes literature, PM2.5 (micrograms per meter3) and
NO2 (parts per billion, ppb). We assess relationships between pollutant levels during the first
month of pregnancy and birth weight of full-term infants. Zip code-specific levels for each
pollutant were a weighted average estimate.7

Each full-term infant (37 to 43 weeks’ gestation) was assigned to the zip code of the
mother’s residence. We calculated the ambient air pollution level for each infant’s zip code,
averaged over the four weeks following the estimated conception date. Modeled covariates
included: gestational age (weekly indicators); maternal education, age (linear spline with
three knots), tobacco use (yes/no), Medicaid (yes/no), and race/ethnicity (non-Hispanic
white, African American and Hispanic); and the zip code’s percent of population below
poverty. We included indicators for date-of-conception in two-week intervals, so
comparisons were spatial.

We also calculated the air pollution level for each zip code averaged over the four-week
period beginning one year after the conception date. Because these exposures occurred after
birth (8+ weeks), they cannot have affected birth weight. Future levels (APi,a

f) are included
only in models that also include pollutant levels prior to birth and a subset of the covariates.

We used the model in Equation (1), with zip code as the area. We fit this model (once) to the
observed birth weights to obtain model-predicted weights for each infant, and then treated
the model-predicted weights as the true expected value in the simulations. To assess the
indicator’s ability to detect confounding, we first generated a birth weight for each infant,
using the “true” predicted values and adding a random Gaussian error. We fit the correct
model including the indicator, and then, to simulate confounding, we fit the misspecified
model (incorrectly omitting a factor) along with the indicator. In most scenarios, we omitted
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an actual, measured factor (e.g., smoking). In a few situations, we created a hypothetical
factor and included it when fitting the model to obtain alternative “true” predicted weights.
We subsequently omitted the variable to simulate additional patterns of confounding. We
calculated the proportion of simulations in which I exceeded 1.96 in absolute value,
rejecting the null hypothesis of no confounding. We also calculated the area under the
receiver operating curve as a measure of discriminatory ability. We include a program for
simulating the power to detect model misspecification due to omission of a confounder
(eAppendix 2, http://links.lww.com). The user can either specify parameters to generate data
hypothetically, or use actual observations to fit a model and base simulations on the fitted
parameters.

Results
PM2.5 was negatively associated with birth weight in these spatial analyses (Table 1,
Scenario 1; β̂ = 20.6/grams/10 µg/m3). Compared with the “true” model that generated the
data, improperly omitting various variables led to varying degrees of simulated confounding.
β̂ changed by about 70% when age was omitted and by 700% when race was omitted (Table
1, column 3). The indicator’s ability to detect simulated confounding also varied
substantially. For the situations considered, the indicator’s ability was weak when
confounding was weak to modest, as when age or tobacco was omitted (AUC = 0.51 – 0.56,
Table 1, column 5). However, this was sample-size dependent: with quadrupling of the
sample size, the ability to detect confounding (created when the poverty variable is
incorrectly omitted increased from 19% (Table 1) to over 50% (data not shown). With
stronger degrees of simulated confounding, the indicator consistently signaled that
confounding might be a problem (e.g., scenarios 5 and 6; AUC = 0.93 –1.00, Table 1).

Simulation results were similar for NO2 (Table 2), and also when we considered
confounding by the hypothetical factors (Table 3). While the ability to detect confounding
again varied, the indicator consistently signaled possible residual confounding with these
sample sizes when the degree of simulated confounding was moderate to strong (e.g., when
race or several variables were omitted (Table 2, scenarios 5 and 6).

Discussion
We extend a method to detect important residual confounding2,3 by describing and
evaluating the method for spatial studies. The ability to detect residual confounding was
excellent for some scenarios, such as when race was intentionally omitted. As with any
statistical technique, the ability to detect residual confounding improves with stronger
confounding and larger sample size. We omitted measured variables, such as race, merely to
illustrate possible scenarios based on relationships of real factors. In actual applications, the
factor creating confounding, if any, could be completely unrecognized and unmeasured.
Although few researchers would omit race from a study of air pollution and birth weight, an
investigator could conceivably be unaware of, and therefore omit, some other factor that
affected air pollution and birth weight in a way similar to race.

The validity of this approach depends on the assumptions. False-positive indications could
arise if, for example, a factor affected both the outcome and future exposures but not the
exposure of interest. Our simulations suggest that the method can discriminate situations
where residual confounding is present from those where it is not, although the strength of
this discrimination ability varies according to the situation.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Directed acyclic graph showing basic causal relationships among exposure (air pollution,
AP0), the health outcome (birth weight, D1), an unmeasured covariate (U0) and future air
pollution (AP2). Confounding by U1 is present, indicated by the backdoor path from AP0 to
D1.
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Figure 2.
Directed acyclic graph showing basic causal relationships among exposure (air pollution,
AP0), the health outcome (birth weight, D1), an unmeasured covariate (U0) and future air
pollution (AP2). Confounding by U1 is absent, as there is no open backdoor path from AP0
to D1.
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